Electromagnetic Final States in MINERvA

Jaewon Park
University of Rochester

Overview

- Motivation
- MINERvA detector
- CC $1\pi^0$ reconstruction
- e/γ Separation using dE/dx
- Michel electron for calibration check
- Single electron final states $(v_{\mu}+e^{-} \rightarrow v_{\mu}+e^{-})$ and v_{e} CCQE)

Motivation

- An understanding of electromagnetic final states is important for v_e appearance experiment
- NC π^0 mimics v_e CCQE (appearance signature) when one of photon is not detected
- v_e CCQE in near detector measures v_e beam contents, which is irreducible background to v_e appearance
- $v_{\mu}+e^{-} \rightarrow v_{\mu}+e^{-}$ scattering measurement gives a constraint on beam flux

π⁰ Final States

NC Resonant π^0

$$V_{\mu} + \boldsymbol{p} \rightarrow V_{\mu} + \boldsymbol{p} + \boldsymbol{\pi}^{0}$$

$$V_{\mu} + \boldsymbol{n} \rightarrow V_{\mu} + \boldsymbol{n} + \boldsymbol{\pi}^{0}$$

NC Coherent π^0

$$\begin{aligned}
\nu_{\mu} + A &\to \nu_{\mu} + \pi^{0} + A \\
\overline{\nu}_{\mu} + A &\to \overline{\nu}_{\mu} + \pi^{0} + A
\end{aligned}$$

In terms of final states

$$\pi^0 \ \pi^0 + p$$

CC Resonant π^0

$$\begin{aligned}
\nu_{\mu} + \mathbf{n} &\to \mu^{-} + \mathbf{p} + \pi^{0} \\
\overline{\nu}_{\mu} + \mathbf{p} &\to \mu^{+} + \mathbf{n} + \pi^{0}
\end{aligned}$$

$$\mu^{+} + \pi^{0}$$
 $\mu^{-} + \pi^{0} + p$

- NC π^0 is more interesting channel but more difficult than CC π^0
- CC π^0 reconstruction takes advantage of muon vertex
- Both NC and CC π^0 reconstruction study is ongoing but preliminary CC π^0 result is presented today
- CC π^0 is valuable for understanding of resonant pion production

MINERvA Detector

• MINERvA detector is made of a stack of "MODULES" (See next slide)

Calorimeter

- Tracker: 1.7 cm scintillator plane
- Ecal: 2mm lead + 1.7 cm scintillator plane
- Hcal: 2.54 cm steel + 1.7cm scintillator plane
- X_0 (Tracker) ~ 42cm
- X_0 (Ecal) ~ 5cm
- Tracker $\sim 6 X_0$
- Entire Ecal $\sim 8 X_0$

Detector Module

• X, U, V coordinates are combined to make 3D tracking

$CC \pi^0$ Reconstruction

$$\overline{\nu}_{\mu} + \boldsymbol{p} \rightarrow \mu^{+} + \boldsymbol{n} + \boldsymbol{\pi}^{0}$$

- Neutron is usually not detected
- Muon track vertex constrains π^0 origin

Angular Scan

- X-view has better granularity
- Two gammas are most frequently distinguishable in Xview
- Use angular scan to find two separate showers

Finding Matching U and V view

- Given X for each zposition, it finds
 matching U and V
 coordinates from 4
 combinations of U and V
- Matching condition X=U+V

Vertex Energy

• Vertex energy: energy of activities connected to vertex

$CC \pi^0$ Mass Distribution

- Anti-neutrino beam
- Anti-muon selected from MINOS
- Anti-neutrino scatters off mainly carbon target (scintillator=CH)

Secondary interaction outside nucleus that produces π^0

CC π^0 Mass Distribution with dE/dx cut

- Narrow peak is near nominal π^0 mass, 135 MeV/c²
- dE/dx: 2-12 MeV/1.7cm
- Vertex energy < 40 MeV

dE/dx for Electron and Gamma Discrimination

- Neutral current π^0 is decayed into energetic gamma + tiny energy gamma
- dE/dx at the beginning of shower is different for electron and gamma
 - Electron loses energy like MIP (Minimum Ionization Particle)
 - Gamma loses energy like twice MIP

Michel Electron

- Unmatched Michel electrons
- Energy scale check between data and MC
- Nice check on calibration

dE/dx vs time

- Slope $((dE/dx)/day) = -4.799E-5 \pm 8.908E-5$
- Slope is consistent with zero within error of slope
- Energy scale is constant over time

$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$ and ν_{e} CCQE

- Well known pure leptonic process is used to get v_{μ} flux information
- v_{μ} scattering off on light electron has small center of mass energy, so it can have only small momentum transfer, Q^2 , which produces very forward electron final state

- Electron neutrino flux will be measured using charged current quasielastic (CCQE) process
- If recoiled nucleon is not observed, two processes look similar

$$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$

• Current study is optimized for single electron final states

 $E \theta^2$ (GeV × radian²)

Single EM Shower Reconstruction

- Once vertex and direction is known, shower cone can be applied
- When (thin) track finder fails on fuzzy shower, isolated blob finder is used and then track fitter can handle fuzzy shower

MC Reconstruction Efficiency

- Electron particle gun is used to calculate efficiency
 - Energy: $0.2 \sim 5$ GeV, Theta: $0\sim45$ deg
- Reconstruction efficiency is 0.96 for small angle (angle <10 degree, energy>400MeV)

MC Angular and Energy Resolution

- X-angle resolution ~ 0.4 degree
- Precise angular reconstruction is critical to separate v_{μ} e elastic scattering from v_{ρ} CCQE
- Energy resolution: 6~ 7%

$$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$
 and ν_{e} CCQE

- Neutrino beam
- $E\theta^2 < 0.1 \text{ GeV} \cdot \text{radian}^2 \text{ cut is used to remove background}$
- $E\theta^2$ is divided into two regions
 - $E\theta^2 < 0.0032$: $\nu_{\mu} + e^- \rightarrow \nu_{\mu} + e^-$ rich region
 - $0.0032 < E\theta^2 < 0.1$: v_e CCQE rich region

Small Sample Data/MC comparison

- Small data (~ 5% to full data) is used for comparison
- Peak in low $E\theta^2$ is found in data

Electron spectrum of v+e-Elastic Scattering

- $E\theta^2 < 0.0032$: $v_{\mu} + e^- \rightarrow v_{\mu} + e^-$ rich region
- Purity: 0.82, efficiency: 0.6
- Expected signal (v_μ+e⁻, v_e+e⁻) is 112 events with 24 background events
- It gives ~10% statistical error on flux constraint

v_e CCQE

Overflowed events

- $0.0032 < E\theta^2 < 0.1$: v_e CCQE rich region
- Purity: 0.58, Efficiency: 0.06
- Efficiency is very low now because cuts are optimized for clean single electron final state with no vertex activity
- High energy tail is more pure ν_e CCQE

NC π⁰ Reconstruction (Preliminary)

- Run Hough 2D Transform to get straight lines for each views
- Z-start position matching

NC π⁰ Reconstruction (Preliminary)

- Apply shower cone using start position for each photons
- Two photons are nicely separated

Summary

- Various EM final states are important for neutrino oscillation experiment
- CC $1\pi^0$ and single electron reconstruction tools are developed and we're looking at data and MC consistency
- NC π^0 and other EM final states are also being studied

Thank You!

(Backup Slides)

NuMI Beamline

- Movable targets to configure beam energy (low energy, medium energy etc)
- Horn current to select sign of neutrino
 - Forward horn current: neutrino dominant beam
 - Reverse horn current: anti-neutrino dominant beam

X, U, V-view Matching

- Lower energy, γ_2 often has steep angle and it doesn't leave hits in all three views
- Just 2-view matching is used for that

Each planes' dE/dx from Michel electrons and rock muons

 Plane to plane variation is consistent between Michel electron and rock muon dE/dx

v+e- Elastic Scattering

v+e- Elastic Scattering

v_e CCQE

v_e CCQE

v_e CCQE

